HAMZA KAMEL

11 0 1 | 1 //1 . 1. 1.

kamelh@purdue.edu (/65) 543-/680 www.linkedin.com/in/hamzahkamel htt	.ps://hamzahk.com/
EDUCATION Pundua University West Lefevette IN	
Purdue Oniversity, west Larayelle, in Mester of Science in Electrical and Computer Engineering	May 2023
Master of Science in Electrical and Computer Engineering Specialization: Innovative Technologies	
Purdua University West Lafavette IN	May 2023
Bachalor of Science in Computer Engineering	Way 2025
Bachelor of Science in Computer Engineering	
TECHNICAL SKILLS	
 Programming Languages, Tools, and Knowledge : Computer Architecture, Git, GitHu 	ıb, C, C++, Rust, Java,
JavaScript, TypeScript, Bash, Assembly Language, Python, System Verilog, Machine	e Learning, AI
 Language: Fluent in reading, writing, and speaking Arabic 	
PROFESSIONAL EXPERIENCE	
Translating C to Safe Rust. Purdue University	May 2024 – August 2024
Graduate Student Researcher	101ay 2021 11agast 2021
• Converted complex C data structures, such as doubly linked lists, into safe, idiomatic	Rust: for example, we used
Rc <refcell<t>> to ensure memory safety and correct functionality</refcell<t>	
• Utilized the converted Rust code as a baseline to compare with code generated by the	C2Rust tool
• Leveraged CMake, Cargo, and Bear to automate the building and testing of programs	
Advanced C Programming, Purdue University	August 2022 – December 2022
Undergraduate Teaching Assistant	-
• Enhanced and sustained proficiency in C programming by guiding approximately 200	Computer Engineering students
through regular office hours, fostering their understanding of programming concepts	
• Strengthened students' problem-solving skills by reviewing C content and preparing the	hem for homework and exams
Curated student questions to improve tutoring solutions discussed in weekly staff mee	tings
Neurava, Purdue Research Park, Startup Company Backed by Purdue University	May 2022 – August 2022
Firmware Engineering Intern	
 Manufactured new firmware for a smart wearable device capable of tracking the vital 	signs of people at risk of
SUDEP (Sudden Unexpected Death in Epilepsy) to give advanced warning	
• Programmed in C and Python to establish real-time communication with the microcor	itroller using radio frequencies,
ensuring consistent data updates	
• Tested SPI frequencies through trial and error to acquire the most consistent results w	ith the fastest running time and
Utilized I2C and SDI to interface with various ching for real time physiclegical data acquisition	
• Ounzed ize and si i to interface with various emps for real-time physiological data acquisition	
PROJECT EXPERIENCE	
Machine Learning for Bioinformatics and Healthcare, Purdue University	January 2024 – May 2024
Conducted a comprehensive assessment of YOLO-based image processing algorithms	s utilizing the Br35H dataset
• Implemented YOLO for brain tumor detection, resolving outdated dependencies and i	imports from research
repositories	-
Aqua-Check, Master's Project Track, Purdue University	August 2023 – May 2024
• Led a six-member team for Aqua-Check, overseeing software goals, data selection, ar	nd core programming functions
Conducted extensive research on bioimpedance values, specifically focusing on the re	lationship between
bioimpedance and total body water, with emphasis on parameters such as resistance (R) instead of reactance (Xc)
Implemented gradient boosting algorithms (Linear Regression, XGBoost, LightGBM)) in Python to estimate individual
total body water (TBW) content in kilograms and determine their corresponding hydr	ation category
Digital Systems Senior Design, Purdue University	August 2022 – December 2022
• Incorporated a CC1310 microcontroller and coded instructions in C using Code Comp	poser Studio
• Developed SPI, UART, and Radio protocols to operate concurrently, facilitating the c	reation of changing light effects
on programmable light strips through seamless communication and by setting SPI to a	a nign speed of 2.4 MHz
• Created a robust transmission system for radio communication between a central cont	roller and receivers, efficiently
senaring 155 bytes of data at each trigger, enabling dissemination of diverse light effect	as to multiple receivers

LEADERSHIP EXPERIENCE

Eta Kappa Nu (HKN), IEEE Honor Society

Purdue Engineering Outreach (PEO), Organization Teaching Engineering Concepts for K-12 President

December 2023 - Present

April 2022 – May 2023

Oversaw club funds, relations, activities, and events, fostering an inclusive environment for teaching engineering ٠